如何预处理数据集

简介泰坦尼克号数据集是数据科学和机器学习项目中使用的经典数据集。它包含有关泰坦尼克号乘客的信息,目标通常是预测哪些乘客在灾难中幸存。在构建任何预测模型之前,预处理数据以确保数据干净且适合分析至关重要。这篇博文将指导您完成使用 python

如何预处理数据集

简介

泰坦尼克号数据集是数据科学和机器学习项目中使用的经典数据集。它包含有关泰坦尼克号乘客的信息,目标通常是预测哪些乘客在灾难中幸存。在构建任何预测模型之前,预处理数据以确保数据干净且适合分析至关重要。这篇博文将指导您完成使用 python 预处理泰坦尼克号数据集的基本步骤。

第 1 步:加载数据

任何数据分析项目的第一步都是加载数据集。我们使用 pandas 库读取包含泰坦尼克号数据的 csv 文件。该数据集包括姓名、年龄、性别、机票、票价以及乘客是否幸存(survived)等特征。

import pandas as pd
import numpy as np

登录后复制

加载泰坦尼克号数据集

titanic = pd.read_csv('titanic.csv')
titanic.head()

登录后复制

了解数据

数据集包含以下与泰坦尼克号乘客相关的变量:

  • 生存:表示乘客是否幸存。

    • 0 = 否
    • 1 = 是
  • pclass:乘客的机票舱位。

    • 1 = 一等
    • 2 = 二等
    • 3 = 三等
  • 性别:乘客的性别。

  • 年龄:乘客的年龄(以岁为单位)。

  • sibsp:泰坦尼克号上的兄弟姐妹或配偶的数量。

  • parch:泰坦尼克号上的父母或孩子的数量。

  • 门票:门票号码。

  • 票价:客运票价。

  • 客舱:客舱号码。

  • 登船:登船港口。

    • c = 瑟堡
    • q = 皇后镇
    • s = 南安普敦

第 2 步:探索性数据分析 (eda)

探索性数据分析(eda)涉及检查数据集以了解其结构以及不同变量之间的关系。此步骤有助于识别数据中的任何模式、趋势或异常。

数据集概述

我们首先显示数据集的前几行并获取统计信息摘要。这让我们了解数据类型、值的范围以及是否存在任何缺失值。

# display the first few rows
print(titanic.head())

# summary statistics
print(titanic.describe(include='all'))

登录后复制

第三步:数据清理

数据清理是处理缺失值、更正数据类型和消除任何不一致的过程。在泰坦尼克号数据集中,age、cabin 和 embarked 等特征存在缺失值。

处理缺失值

为了处理缺失值,我们可以用适当的值填充它们或删除缺失数据的行/列。例如,我们可以用年龄中位数填充缺失的 age 值,并删除缺失 embarked 值的行。

# fill missing age values with the mode
titanic['age'].fillna(titanic['age'].mode(), inplace=true)

# drop rows with missing 'embarked' values
titanic.dropna(subset=['embarked'], inplace=true)

# check remaining missing values
print(titanic.isnull().sum())

登录后复制

第四步:特征工程

特征工程涉及改造现有特征以提高模型性能。此步骤可以包括对分类变量进行编码以缩放数值特征。

编码分类变量

机器学习算法需要数值输入,因此我们需要将分类特征转换为数值特征。我们可以对 sex 和 embarked 等功能使用 one-hot 编码。

# Convert categorical features to numerical
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

#fit the required column to be transformed
le.fit(df['Sex'])
df['Sex'] = le.transform(df['Sex'])

登录后复制

结论

预处理是任何数据科学项目中的关键步骤。在这篇博文中,我们介绍了加载数据、执行探索性数据分析、清理数据和特征工程的基本步骤。这些步骤有助于确保我们的数据已准备好进行分析或模型构建。下一步是使用这些预处理的数据来构建预测模型并评估其性能。如需进一步了解,请查看我的 colab 笔记本

通过遵循这些步骤,初学者可以在数据预处理方面打下坚实的基础,为更高级的数据分析和机器学习任务奠定基础。快乐编码!

以上就是如何预处理数据集的详细内容,更多请关注叮当号网其它相关文章!

文章来自互联网,只做分享使用。发布者:张大嘴,转转请注明出处:https://www.dingdanghao.com/article/663931.html

(0)
上一篇 2024-07-30 16:50
下一篇 2024-07-30 16:50

相关推荐

联系我们

在线咨询: QQ交谈

邮件:442814395@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信公众号