3D Few-shot分割结果示例技术背景3D场景理解在自动驾驶、智能机器人等领域扮演着至关重要的角色,它使设备能够感知并理解周围的三维世界。尽管传统的全监督学习模型在特定类别的识别上表现出色,但这些模型通常只限于识别这些预定义的类别。这就意味着,每当需要识别新的对象类别时,就必须收集大量的3D场景数据并进行详细标注,这一过程不仅耗时耗力,还极大限制了全监督模型在真实世界中的应用广度和灵活性。然而,借助Few-shot学习方法,这一局面得到了显著改善。Few-shot学习是一种需要极少标注样本就能迅速适应新类别的技术。这意味着模型可以通过少量的示例迅速学习和适应新的环境,大大降低了数据收集和处理的成本。这种快速、灵活的学习方式,使得3D场景理解技术更加适应快速变化的现实世界,为各种应用场景如自动驾驶和高级机器人系统打开了新的可能性。因此,研究Few-shot 3D模型能有效推动很多重要任务在更广阔世界的实际应用。 特别的,对于Few-shot 3D point cloud semantic segmentation(FS-PCS)任务,模型的输入包括support point cloud以及关于新类别的标注(support mask)和query point cloud。模型需要通过利用support point cloud和support mask获得关于新类别的知识并应用于分割query point cloud,预测出这些新类别的标签。在模型训练和测试时使用的目标类别无重合,以保证测试时使用的类均为新类,未被模型在训练时见过。任务的重新审视与改正 图1. 两个场景的可视化(前景类分别为door和board) 表1. 存在(w/FG)和不存在前景泄露(w/o FG)时过往模型的性能比较该文章重新审视了当前FS-PCS任务。发现当前的任务setting具有两个显著的问题:
总结来说,这一领域的前景十分广阔,而且目前尚处于新兴起步阶段,对于广大的研究者而言,无疑是一个充满希望和机遇的研究领域。参考链接:[1] Lang, Chunbo, et al. “Progressive parsing and commonality distillation for few-shot remote sensing segmentation.” IEEE Transactions on Geoscience and Remote Sensing (2023).[2] Liu, Yuanwei, et al. “Intermediate prototype mining transformer for few-shot semantic segmentation.” Advances in Neural Information Processing Systems 35 (2022): 38020-38031.[3] Zhang, Canyu, et al. “Few-shot 3d point cloud semantic segmentation via stratified class-specific attention based transformer network.” Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. No. 3. 2023.[4] Boudiaf, Malik, et al. “Few-shot segmentation without meta-learning: A good transductive inference is all you need?.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021. [5] Wang, Jiahui, et al. “Few-shot point cloud semantic segmentation via contrastive self-supervision and multi-resolution attention.” 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.[6] Lang, Chunbo, et al. “Learning what not to segment: A new perspective on few-shot segmentation.” Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.[7] Sun, Yanpeng, et al. “Singular value fine-tuning: Few-shot segmentation requires few-parameters fine-tuning.” Advances in Neural Information Processing Systems 35 (2022): 37484-37496.