C++ 函数在并发编程中的互斥和临界区实现?

在并发编程中,互斥和临界区用于防止数据竞争。互斥是一个数据结构,允许一次只有一个线程访问共享资源,具体实现如下:定义一个带有原子标记的 mutex 类。使用 test_and_set() 方法加锁,并使用 clear() 方法解锁。临界区是

并发编程中,互斥临界区用于防止数据竞争。互斥是一个数据结构,允许一次只有一个线程访问共享资源,具体实现如下:定义一个带有原子标记的 mutex 类。使用 test_and_set() 方法加锁,并使用 clear() 方法解锁。临界区是一段代码,一次只能有一个线程执行,具体实现如下:声明一个互斥量。使用 lock_guard 包装器在临界区中访问共享资源。

C++ 函数在并发编程中的互斥和临界区实现?

C++ 函数在并发编程中的互斥和临界区实现

在并发编程中,当多个线程同时访问共享资源时,需要防止数据竞争并确保数据的一致性。互斥和临界区是实现此目的的两种常见方法。

互斥

互斥是一种数据结构,它确保一次只有一个线程可以访问共享资源。互斥的实现通常使用以下方法:

class Mutex {
private:
    std::atomic_flag flag;

public:
    void lock() {
        while (flag.test_and_set(std::memory_order_acquire));
    }

    void unlock() {
        flag.clear(std::memory_order_release);
    }
};

登录后复制

临界区

临界区是代码的一段,在任何给定时刻,只有一个线程可以执行该代码。临界区的实现通常使用以下语法:

std::mutex mutex;

void critical_section() {
    std::lock_guard<std::mutex> lock(mutex);
    // 共享资源的访问
}

登录后复制

实战案例

考虑一个包含共享计数器的程序,多个线程可以同时对其进行增量。使用互斥保护计数器:

Mutex counter_mutex;
int counter = 0;

void increment_counter() {
    counter_mutex.lock();
    counter++;
    counter_mutex.unlock();
}

登录后复制

使用临界区保护计数器:

std::mutex counter_mutex;

void increment_counter() {
    std::lock_guard<std::mutex> lock(counter_mutex);
    counter++;
}

登录后复制

使用互斥或临界区可以确保只有一个线程同时修改计数器,从而防止数据竞争。正确的选择取决于具体应用程序的性能和复杂性要求。

以上就是C++ 函数在并发编程中的互斥和临界区实现?的详细内容,更多请关注叮当号网其它相关文章!

文章来自互联网,只做分享使用。发布者:牧草,转转请注明出处:https://www.dingdanghao.com/article/415977.html

(0)
上一篇 2024-04-28
下一篇 2024-04-28

相关推荐

联系我们

在线咨询: QQ交谈

邮件:442814395@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信公众号