JS 的 AI 时代来了!

JS-Torch 简介
js-torch是一种深度学习javascript库,其语法与pytorch非常相似。它包含一个功能齐全的张量对象(可与跟踪梯度),深度学习层和函数,以及一个自动微分引擎。js-torch适用于在javascript

JS-Torch 简介

js-torch是一种深度学习javascript库,其语法与pytorch非常相似。它包含一个功能齐全的张量对象(可与跟踪梯度),深度学习层和函数,以及一个自动微分引擎。js-torch适用于在javascript中进行深度学习研究,并提供了许多方便的工具和函数来加速深度学习开发。

JS 的 AI 时代来了!图片

PyTorch是一个开源的深度学习框架,由Meta的研究团队开发和维护。它提供了丰富的工具和库,用于构建和训练神经网络模型。PyTorch的设计理念是简单和灵活,易于使用,它的动态计算图特性使得模型构建更加直观和灵活,同时也提高了模型构建和调试的效率。PyTorch的动态计算图特性也使得其模型构建更加直观,便于调试和优化。此外,PyTorch还具有良好的可扩展性和运行效率,使得其在深度学习领域广受欢迎和应用。

你可以通过 npm 或 pnpm 来安装 js-pytorch:

npm install js-pytorchpnpm add js-pytorch

登录后复制

或者在线体验 js-pytorch 提供的 Demo[3]:

JS 的 AI 时代来了!图片

https://eduardoleao052.github.io/js-torch/assets/demo/demo.html

JS-Torch 已支持的功能

目前 JS-Torch 已经支持 Add、Subtract、Multiply、Divide 等张量操作,同时也支持Linear、MultiHeadSelfAttention、ReLU 和 LayerNorm 等常用的深度学习层。

Tensor Operations

  • Add
  • Subtract
  • Multiply
  • Divide
  • Matrix Multiply
  • Power
  • Square Root
  • Exponentiate
  • Log
  • Sum
  • Mean
  • Variance
  • Transpose
  • At
  • MaskedFill
  • Reshape

Deep Learning Layers

  • nn.Linear
  • nn.MultiHeadSelfAttention
  • nn.FullyConnected
  • nn.Block
  • nn.Embedding
  • nn.PositionalEmbedding
  • nn.ReLU
  • nn.Softmax
  • nn.Dropout
  • nn.LayerNorm
  • nn.CrossEntropyLoss

JS-Torch 使用示例

Simple Autograd

import { torch } from "js-pytorch";// Instantiate Tensors:let x = torch.randn([8, 4, 5]);let w = torch.randn([8, 5, 4], (requires_grad = true));let b = torch.tensor([0.2, 0.5, 0.1, 0.0], (requires_grad = true));// Make calculations:let out = torch.matmul(x, w);out = torch.add(out, b);// Compute gradients on whole graph:out.backward();// Get gradients from specific Tensors:console.log(w.grad);console.log(b.grad);

登录后复制

Complex Autograd (Transformer)

import { torch } from "js-pytorch";const nn = torch.nn;class Transformer extends nn.Module {constructor(vocab_size, hidden_size, n_timesteps, n_heads, p) {super();// Instantiate Transformer's Layers:this.embed = new nn.Embedding(vocab_size, hidden_size);this.pos_embed = new nn.PositionalEmbedding(n_timesteps, hidden_size);this.b1 = new nn.Block(hidden_size,hidden_size,n_heads,n_timesteps,(dropout_p = p));this.b2 = new nn.Block(hidden_size,hidden_size,n_heads,n_timesteps,(dropout_p = p));this.ln = new nn.LayerNorm(hidden_size);this.linear = new nn.Linear(hidden_size, vocab_size);}forward(x) {let z;z = torch.add(this.embed.forward(x), this.pos_embed.forward(x));z = this.b1.forward(z);z = this.b2.forward(z);z = this.ln.forward(z);z = this.linear.forward(z);return z;}}// Instantiate your custom nn.Module:const model = new Transformer(vocab_size,hidden_size,n_timesteps,n_heads,dropout_p);// Define loss function and optimizer:const loss_func = new nn.CrossEntropyLoss();const optimizer = new optim.Adam(model.parameters(), (lr = 5e-3), (reg = 0));// Instantiate sample input and output:let x = torch.randint(0, vocab_size, [batch_size, n_timesteps, 1]);let y = torch.randint(0, vocab_size, [batch_size, n_timesteps]);let loss;// Training Loop:for (let i = 0; i 

登录后复制

有了 JS-Torch 之后,在 Node.js、Deno 等 JS Runtime 上跑 AI 应用的日子越来越近了。当然,JS-Torch 要推广起来,它还需要解决一个很重要的问题,即 GPU 加速。目前已有相关的讨论,如果你感兴趣的话,可以进一步阅读相关内容:GPU Support[4] 。

参考资料

[1]JS-Torch: https://github.com/eduardoleao052/js-torch

[2]PyTorch: https://pytorch.org/

[3]Demo: https://eduardoleao052.github.io/js-torch/assets/demo/demo.html

[4]GPU Support: https://github.com/eduardoleao052/js-torch/issues/1

以上就是JS 的 AI 时代来了!的详细内容,更多请关注叮当号网其它相关文章!

文章来自互联网,只做分享使用。发布者:代号邱小姐,转转请注明出处:https://www.dingdanghao.com/article/316736.html

(0)
上一篇 2024-04-08 09:15
下一篇 2024-04-08 09:30

相关推荐

联系我们

在线咨询: QQ交谈

邮件:442814395@qq.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信公众号